The sum $2^{\mathit{KA}(x)-\mathit{KP}(x)}$ over all prefixes $x$ of some binary sequence can be infinite
نویسندگان
چکیده
We consider two quantities that measure complexity of binary strings: KM(x) is defined as the minus logarithm of continuous a priori probability on the binary tree, and K(x) denotes prefix complexity of a binary string x. In this paper we answer a question posed by Joseph Miller and prove that there exists an infinite binary sequence ω such that the sum of 2KM(x)−K(x) over all prefixes x of ω is infinite. Such a sequence can be chosen among characteristic sequences of computably enumerable sets.
منابع مشابه
2-D skew constacyclic codes over R[x, y; ρ, θ]
For a finite field $mathbb{F}_q$, the bivariate skew polynomial ring $mathbb{F}_q[x,y;rho,theta]$ has been used to study codes cite{XH}. In this paper, we give some characterizations of the ring $R[x,y;rho,theta]$, where $R$ is a commutative ring. We investigate 2-D skew $(lambda_1,lambda_2)$-constacyclic codes in the ring $R[x,y;rho,theta]/langle x^l-lambda_1,y^s-lambda_2rangle_{mathit{l}}.$ A...
متن کاملExtended and infinite ordered weighted averaging and sum operators with numerical examples
This study discusses some variants of Ordered WeightedAveraging (OWA) operators and related information aggregation methods. Indetail, we define the Extended Ordered Weighted Sum (EOWS) operator and theExtended Ordered Weighted Averaging (EOWA) operator, which are applied inscientometrics evaluation where the preference is over finitely manyrepresentative works. As...
متن کاملA Universal Investigation of $n$-representations of $n$-quivers
noindent We have two goals in this paper. First, we investigate and construct cofree coalgebras over $n$-representations of quivers, limits and colimits of $n$-representations of quivers, and limits and colimits of coalgebras in the monoidal categories of $n$-representations of quivers. Second, for any given quivers $mathit{Q}_1$,$mathit{Q}_2$,..., $mathit{Q}_n$, we construct a new quiver $math...
متن کاملPlain stopping time and conditional complexities revisited
In this paper we analyze the notion of “stopping time complexity”, the amount of information needed to specify when to stop while reading an infinite sequence. This notion was introduced by Vovk and Pavlovic [8]. It turns out that plain stopping time complexity of a binary string x could be equivalently defined as (a) the minimal plain complexity of a Turing machine that stops after reading x o...
متن کاملMAGMA-JOINED-MAGMAS: A CLASS OF NEW ALGEBRAIC STRUCTURES
By left magma-$e$-magma, I mean a set containingthe fixed element $e$, and equipped by two binary operations "$cdot$", $odot$ with the property $eodot (xcdot y)=eodot(xodot y)$, namelyleft $e$-join law. So, $(X,cdot,e,odot)$ is a left magma-$e$-magmaif and only if $(X,cdot)$, $(X,odot)$ are magmas (groupoids), $ein X$ and the left $e$-join law holds.Right (and two-sided) magma-$e$-magmas are de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014